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1.0 SUMMARY 

In this study, the tasks of correlating observations and detecting maneuvers of space 
objects are addressed through application of minimum-fuel distance metrics, which provide a 
natural tool with which to associate space object observation data. A numerical trajectory 
optimization software is developed to solve deterministic minimum-fuel boundary value 
problems, specifically for impulsive and low-thrust trajectories. A framework, referred to as the 
Data Association using Minimum-Fuel Maneuver Metric (DAMMM) algorithm, is implemented 
to utilize the trajectory optimization software and control distance metrics for maneuver 
hypothesis testing, incorporating existing theory accounting for boundary condition uncertainty. 
A more detailed explanation of this algorithm and the components therein can be found in 
Appendix A. A simulated, realistic scenario is constructed to test the algorithm, and the results 
are compared to real data from a similar scenario gathered from Wide Area Augmentation 
System (WAAS) data. Using the simulated and operational data results, the algorithm is tested to 
evaluate its limitations and tuned for application to operational use. The control distance metric 
data association technique is compared to other data association techniques (e.g. Euclidean and 
Mahalonobis distances), revealing the merits of the control distance metric in orbital mechanics 
applications. 

2.0 INTRODUCTION 

The problem of properly correlating on-orbit observations and detecting object 
maneuvers is a challenging and persistent endeavor. There are currently at least 17,000 trackable 
on-orbit objects, 1,000 of which are active [1, 2], and these numbers are expected to grow 
significantly due to improved tracking capabilities, new launches, and continued debris 
generation [3]. Predicting conjunction events is a difficult task [4]; however, recent events 
highlight the mutual interest that national and private operators share for accurate object 
correlation and maneuver detection capability [5]. 

The objective of this study is to validate a novel method for correlating space object 
tracks with known Resident Space Objects (RSOs) and to characterize and reconstruct RSO 
maneuvers in support of the Space Situational Awareness (SSA) Mission Area. The problem of 
correlating Uncorrelated Tracks (UCTs) over large time periods is particularly difficult when 
objects maneuver during observation gaps. Even relatively small station-keeping maneuvers at 
Geostationary Earth Orbit (GEO) can result in position discrepancies of many kilometers after an 
observation gap. UCT correlation is further confounded by state estimate uncertainties. Since 
both the initial and final UCTs are best estimates, with associated uncertainty distributions, the 
question of correlation becomes difficult to answer in operational settings, particularly in 
densely-populated regions of the space environment. 

Given a propagated best estimate of the state and its associated distribution, correlating 
UCTs tests the hypothesis that a newly observed state (with its associated distribution) could 
possibly be a previously observed object, and if not, what the discrepancy is. There are many 
distance- or pseudo-distance metrics that may be used to measure the distance between two state 
distributions (e.g. Mahalonobis distance). Problematically, none of these distance metrics 
directly quantify the level of propulsive effort required to effect the observed state change. This 
difference is critical, as very small fuel expenditures at specific points in an orbit can produce 
outsized state discrepancies. 
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This study uses a minimum-fuel control distance metric and hypothesis testing to 
approach data association, maneuver detection and characterization problems. Because on-board 
fuel remains a scarce commodity for operational spacecraft, operators are likely to execute 
optimal or near-optimal maneuvers. Under the assumptions of optimal control, multiple 
deterministic observations can be related by computing the control effort required for a 
spacecraft to meet those boundary conditions. This approach necessitates the reconstruction of a 
minimum-fuel trajectory consistent with a-priori information and new observations, supporting 
SSA maneuver characterization needs. Optimal connecting trajectories are computed in a 
MATLAB minimum quadratic control trajectory optimization implementation of trajectory 
optimization software. The resulting optimal trajectory is used as an input in the proposed 
hypothesis testing framework, incorporating anomaly detection results from the previous papers 
[6, 7, 8]. The combined framework is tested using simulated and real-world operational data to 
validate the method and evaluate any limitations. Finally, the results from these simulation cases 
are compared to data association approaches using other distance metrics. 

2.1 Statement of Work 

The original Statement of Work (SoW) for this effort is enumerated below.  Each SoW element 
is explicitly identified in the appropriate sections of this report.  Minor modifications to the SoW 
agreed upon by the Program Manager and Principal Investigator (PI) are identified and described 
in footnotes where appropriate. 

1. Framework Implementation. Incorporate existing theory accounting for boundary
condition uncertainty and anomaly detection hypothesis testing.  In particular, the
prototype code used to generate results in previous literature will be rewritten to
accommodate more general test cases and data inputs.1

2. Compare Results. Compare the control distance metric data association techniques
against other data association approaches (e.g., Mahalanobis distance, orbit element
gating) using simulated data2.  After the proposed approach has been implemented and
internally tested, the results will be compared with previously proposed and currently
used approaches such as Mahalonobis distance and orbit element gating. As the project
progresses, different data association methods will be compared.

3. Extend Theory3.  The theoretical approach to reducing variational cost conservatism will
be pursued using analytical methods.  After a satisfactory theory accounting for boundary
condition variations has been developed, it will be compared with both the more

1 For programmatic purposes, the development, implementation, and inclusion of trajectory 
optimization code was also added to the effort. 
2 During the performance period of this effort the empirical WAAS data became available and a 
similar analysis with this data is included in this report. 
3 The Galaxy 15 trajectory information in the WAAS data presumes an electric thruster 
propulsion system; trajectory fuel cost function modifications were unnecessary for this effort.  
An extension of the theory to allow for Gaussian Sum representations of the boundary constraint 
uncertainties is included instead in Appendix B. 
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conservative quadratic cost upper bound and the unscented transform approach recently 
developed in the literature. 

The remainder of this report addresses these SOW items as follows: SoW item 1, ‘Framework 
Implementation,’ is discussed in section 2.2, DAMMM Overview, SoW item 2, ‘Compare 
Results,’ is addressed in section 3.0 and 4.0, and SoW item 3, ‘Extend Theory,’ is discussed in 
Appendix B. 

2.2 DAMMM Overview 

To address this research goal, the algorithm framework (and MATLAB software block 
diagram) is defined in Figure 1 and described below. The variables of Figure 1 are as follows: 
      ,஻ݐ ஜ,஻ is the mean state of the observation atݔ ,஺ݐ ஜ,஺ is the mean state of the observation atݔ

௫ܲ,஺  is the covariance of the observation at ݐ஺ , ௫ܲ,஻ is the covariance of the observation  ݐ஻ ,      
x*(t) is the optimal state trajectory, u*(t)  is the optimal control trajectory, p*(t)  is the optimal 
costate trajectory, ܬ௡௢௠ is the quadratic control cost of the optimal trajectory, f(J) is the quadratic 
control cost distribution, and ுܲ is the probability of anomaly.  This software framework and 
associated code documentation in Appendix A constitute the work satisfying the ‘Framework 
Implementation’ SoW item in section 2.1.  The inputs to the algorithm are two UCTs, containing 
the estimated states of the trajectory boundary conditions along with covariance matrices 
describing the probability distribution of these boundary states. The first portion of the algorithm 
simply parses the input tracks to extract the nominal boundary states at the initial point (labeled 
as point A in Figure 1) and final point (B) and stores the covariance data for use later. 

Figure 1. DAMMM Algorithm Functional Flow Diagram 

The nominal states are used to generate an optimal trajectory that connects the boundary 
points through the trajectory optimization algorithm. This algorithm solves the deterministic two-
point boundary value problem using MATLAB’s constrained minimization function, fmincon. 
The cost function being minimized, shown in Equation 1, is the quadratic control cost (J), which 
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is a function of the control thrust accelerations (u) and is ideal for variable specific impulse 
engines (VSI): 

J = ½  uTu dt (1) 

The initial and final points are used as boundary conditions and the simulation time is discretized 
into a user-defined number of intermediate steps. The decision variable for this minimization is a 
stacked vector of the thrust acceleration vectors at each discrete time instant. Keplerian two-body 
dynamics are enforced between steps of the trajectory as equality constraints to ensure the 
generated trajectory dynamics are accurate. Because the partial derivatives of the dynamics with 
respect to the decision variables (thrust accelerations) are well known, the gradient of the 
constraint is supplied to the optimization algorithm, greatly improving performance of the 
implementation. The output of this step is a nominal optimal state and control trajectory 
connecting the UCTs. The generated optimal trajectory is validated using the nonlinear dynamics 
to numerically integrate the proposed control vector and quantify the error between the 
integrated final condition and the specified final UCT boundary condition. Adjusting tunable 
convergence parameters of the optimization algorithm, such as absolute and relative tolerances, 
can reduce this error. For this study, the relative and absolute convergence criteria are both set to 
10-12 to decrease final state error. The well-behaved nature of the dynamics allows solutions to 
even this low tolerance on the order of tens of steps, so the effect on computational tractability is 
minimal. For instance, over 100 test runs of the nominal simulated trajectory (defined in Section 
3.1), the trajectory optimization routine ran 5 iterations of the optimizer before converging, with 
an average runtime of 0.314 seconds. The computer used for this test is an i5-2500K clocked at 
4.2 GHz with 16 GB random access memory (RAM) running 64-bit MATLAB 2013a. 

The optimal states x*(t) and controls u*(t) for tA ≤ t ≤ tB are then used to estimate a history 
of optimal control costates p*(t). This step is required because algorithm that computes the 
control cost distribution requires costates instead of thrust accelerations. The costates are 
constructed iteratively by guessing a costate trajectory based on the optimal control trajectory 
and then modifying the costates through iterative least-squares method until the control cost is 
within a user-defined convergence tolerance of the optimal trajectory. As an additional check, 
the new optimal costate trajectory is compared to the original optimal trajectory to ensure the 
endpoint error has not changed significantly. 

Using the optimal state and costate trajectories, as well as the covariance information 
from the input tracks, control probability distributions are generated using the techniques 
outlined in a previous paper [8]. Finally, the nominal optimal control cost and control 
distribution are used to test the hypothesis that a maneuver actually occurred and complete the 
maneuver detection task. 

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

As described in section Section 2.2, each UCT pair combination examined in this study is 
considered a Two-point Boundary Value Problem (TPBVP). The trajectory optimization is 
performed to generate a nominal optimal trajectory connecting the two boundary conditions 
(UCTs). Presently, Keplerian two-body dynamics are assumed and other perturbations are 
ignored (e.g., lunar, solar, non-spherical perturbations). For each case tested, a nominal UCT 
boundary condition uncertainty (covariance matrix) is parameterized using a scalar multiplier to 
examine the effects of uncertainty on anomaly detection.  Similarly, to examine the effects of 
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time separation between UTCs, each scenario simulates various time intervals between UCTs of 
up to 48 hours.  The resulting control cost distributions due to state uncertainty at the boundary 
conditions are approximated using the analytic first and second moments as normal distributions 
as specified in Holzinger et al [8]. The deterministic control cost is then compared to the control 
cost distributions to rigorously test the maneuver / anomaly hypothesis. 

Using these boundary conditions, a deterministic maneuver connecting UCT A and UCT 
B is computed.  After generating the nominal optimal control trajectory and the corresponding 
costate trajectory (x*(t) and p*(t)), uncertainties in position and velocity are used to generate an 
approximate probability distribution of the control cost. The position and velocity uncertainty 
values used in this simulation are shown in Table 1. The mean of the total cost distribution (μp) is 
equal to the optimal nominal control cost (J*) plus the minimum detectable cost for a given 
uncertainty condition, where the minimum detectable cost is calculated from the state uncertainty 
boundary conditions. The process for calculating the mean (ߤ௣ሻ and standard deviation (ߪ௣ሻ from 
the optimal trajectory and covariance is based on Equations 2 and 3 respectively. The details of 
the derivation of these equations are in the previous paper [8] with Tr being the trace operator. 

௣ߤ ൌ ∗ܬ ൅ Trሾષܢ۾ሿ (2) 
௣ߪ ൌ ௭࣓ࡼ்࣓ ൅ 2Trሾષܢ۾ષܢ۾ሿ (3) 

Here, Pz is a 12-by-12 matrix with the initial and final covariances on the upper-left and lower-
right 6x6 block diagonals, Ω is the term in the performance function corresponding to the 
quadratic in the perturbation term (Equation 15 in Reference 8), and ω is the term in the 
performance function corresponding to the cross-term between the nominal control distance and 
perturbation (Equation 14 in Reference 8). Furthermore, the minimum detectable quadratic cost 
is used to determine if state uncertainty accounts for the state change, and is defined as the mean 
of the cost distribution generated from state uncertainty, shown in Equation 4 (using terms from 
Equation 2): 

ௗ௘௧ܬ ൌ Trሾષܢ۾ሿ (4) 

In order to better model the cost distribution, an exact distribution is also constructed using a 
Monte-Carlo approach using a random vector ࢆߜ ∈ ܰሺ૙,  ௭ሻ. The quadratic cost due to this stateࡼ
uncertainty can then be calculated as shown in Equation 5 [8]: 

௨௡௖ܬ ൌ ࢆߜ்࣓ ൅  (5) ࢆߜષ்ࢆߜ

Ten-thousand costs were sampled and binned into 1000 bins to construct a distribution of costs. 
The minimum detectable cost for this distribution is then found by computing the normalized 
Probability Density Function (PDF) and Cumulative Distribution Function (CDF). The cost 
where the CDF for this control distribution equals 0.5 is defined as the minimum detectable 
control cost. While both Gaussian approximate and Monte-Carlo distributions are generated, the 
resulting distributions are nearly identical, so the remainder of the report uses the (more 
accurate) Monte-Carlo distribution. 

A trajectory with a nominal control cost J* greater than the minimum detectable cost Jdet 
has a higher probability (greater than 0.5, asymptotically approaching 1 as J* increases) of being 
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the result of a controlled maneuver or unmodeled perturbation and not just the result of 
propagated boundary condition uncertainty. 

The probability that a hypothesis is true (݌஺) can be computed from the distribution of 
costs ( ௃݂∗ሺܬ∗ሻሻ	as shown in Equation 6 [7]: 

஺݌ ൌ ׬ ௃݂∗ሺܬ∗ሻdܬ∗
௃∗

ିஶ	  (6)
A sample result from this method (using the synthetic scenario defined in Section 3.1) is shown 
in Figure 3. The figure shows the PDF and CDF for the quadratic control cost as a function of 
control cost. The maximum value of the normalized PDF corresponds to the minimum detectable 
cost as defined in Equation 4, and the vertical dashed line represents the nominal optimal control 
cost for that maneuver. On the CDF plot, it can be seen that the intersection of the CDF plot and 
nominal quadratic cost yields a probability of anomaly of approximately 0.75, or 75%. Indeed, 
the CDF is the key to computing the probability that a maneuver has occurred for a given 
optimal trajectory and state uncertainty. This probability of a maneuver occurring is also referred 
to as the probability of anomaly, denoting the possibility that anomalous behavior outside the 
assumed dynamics (e.g. a maneuver or unmodeled perturbations) are the cause for the state 
change. 

Figure 2. Normalized PDF and CDF vs Difference From Minimum Detectable Control Cost 

Since the control cost and distribution varies for each time horizon and UCT 
uncertainties, it is more intuitive to define and use a Signal-to-Noise Ratio (SNR) as the ratio of 
the nominal optimal control cost to the minimum detectable cost, as shown in Equation 7: 

ܴܵܰ ൌ ௃∗

௃೏೐೟
	ൌ ௃∗

୘୰ሾષࢠࡼሿ
(7)
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If the nominal optimal control cost (the signal) is equal to the minimum detectable quadratic cost 
for a given state uncertainty (the noise), then the SNR is unity. When SNR = 1, the probability of 
anomaly is equal to 0.5, or 50%. That is to say, there is an equal probability that the observed 
state change is caused by an anomaly (such as a control maneuver) or caused by uncertainty in 
the initial and final states. As the nominal cost increases with respect to the minimum detectable 
cost, the SNR increases and the probability that the state change is caused by an anomaly 
increases. As SNR increases, the nominal cost becomes substantially larger than the cost 
uncertainty, so the probability that state uncertainty could cause the state change is zero and the 
probability of anomaly approaches 1.0, or 100%. 

Given an optimal trajectory and uncertainty in the boundary conditions, one can compute 
the likelihood that the observed state change (or lack thereof) is due to quiescent propagation or 
active maneuvering, thus addressing the maneuver detection goal. This final step in the 
DAMMM procedure is referred to as testing the anomaly hypothesis, as shown in Figure 1. 
Additionally, if it is determined that boundary condition uncertainty cannot account for the state 
change, and a maneuver or unmodeled perturbation must have occurred, the minimum magnitude 
and time history of the potential maneuver can be computed, characterizing any such maneuver. 
Furthermore, if the maneuver is determined to be impossible given the assumed propulsive 
capability of the RSO, this method can be used to associate (or disassociate, in this case) UCTs 
based on the control authority required. 

The first part of SoW item 2, ‘Compare Results,’ is to validate the software 
implementation. To do so, extreme test cases are used to identify the limits and performance of 
this approach in non-ideal situations. Primarily, the process sensitivity to boundary condition 
uncertainty and simulation duration must be understood to better utilize and interpret the results 
of the algorithm. Increasing state uncertainty decreases the SNR (minimum detectable cost 
increases), and it is important to know what SNRs yield reliable results. Additionally, simulation 
duration (the time between initial and final boundary conditions) affects the performance of the 
trajectory optimizer, and the problem of correlating UCTs over large time periods is particularly 
difficult when objects maneuver during gaps in observations. 

To validate the software implementation, a sensitivity study is conducted to generate 
confidence curves of probability of anomaly based on a) maneuver SNR and b) UCT time 
separation. The boundary condition uncertainty is initialized at 1 meter in position and 0.01 
meters-per-second in velocity, as shown in Equation 8: 

࡭ࡼ ൌ ࡮ࡼ ൌ diagሺߙଶ, ,ଶߙ ,ଶߙ ሺ0.01ߙሻଶ, ሺ0.01ߙሻଶ, ሺ0.01ߙሻଶሻ , (8) 

where α is the scalar that is varied between scenarios to change the uncertainty (and modulate the 
effective SNR). The scalar was allowed to vary logarithmically from 1 to 105, determined by trial 
and error to cover a wide range of SNR values (from near-zero to above 6). This corresponds to 
position and velocity uncertainties of 100 km / 1 km/s at maximum, and 10m / 0.1m/s at 
minimum. The simulation duration between UCTs is varied as well, keeping the ascending node 
passage at the midpoint of the simulation duration. The initial and final times are varied from 5 
minutes before and after the ascending node respectively (10 minute simulation duration) to 24 
hours before and after the ascending node respectively (48 hour simulation duration). The results 
of this study, as well as the nominal 1-hour duration case, are included in Section 4.1. 
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3.1 Scenario Descriptions 

To validate the DAMMM framework, two scenarios are considered. First, a synthetic 
data (simulated) scenario is constructed with a geostationary spacecraft executing a one-degree 
inclination-change maneuver at the ascending node. This particular scenario was chosen to 
replicate the available WAAS data for the Galaxy 15 geostationary spacecraft. The second 
scenario uses the WAAS data, which enables examination of Galaxy 15 N-S (inclination) electric 
thruster station-keeping maneuvers. This process illustrates a possible operational use-case of the 
software package and identifies how the proposed DAMMM framework for maneuver detection, 
characterization, and UCT correlation can work.  Each scenario is described individually in the 
following subsections. 

3.1.1 Synthetic Data Scenario. 

The synthetic (simulated) scenario is constructed to emulate an inclination-change station-
keeping maneuver, such as the operational case provided in the WAAS data. The boundary 
conditions for this simulation can be seen in Table 1. A spacecraft is initialized in a circular orbit 
at GEO with an initial inclination of one-degree. The final state has an identical semi-major axis, 
eccentricity, and right ascension of the ascending node, now has zero inclination. Note that, since 
this orbit is circular, the argument of periapsis is undefined. Notice also that the true anomaly 
changes by roughly 15 degrees during the simulation. At GEO, this approximately corresponds 
to a one-hour simulation duration. The initial condition (UCT A) occurs 30-minutes before the 
spacecraft crosses the ascending node (where the maneuver is executed), and the final condition 
(UCT B) occurs 30-minutes after the ascending node crossing. A time-step of one minute 
between each discrete step of the simulation is selected, so the simulation is divided into 61 
equal steps. Figure 3 shows the inclination approaching the target value over the course of the 
simulation, as well as the commanded control (thrust acceleration), in meters-per-second. 

Table 1. Simulated Scenario Boundary Conditions 

Parameter 
Initial Condition 

(UCT A)  
Final Condition 

(UCT B) 
Units 

Semi-major Axis 42164 42164 kilometers 
Inclination 1 0 degrees
Eccentricity 0 0 -

Right Ascension of 
Ascending Node 

0 0 degrees

Argument of 
Periapsis 

n/a n/a degrees

True Longitude 352.4795 7.5205 degrees 
Position Uncertainty 1α 1α meters 

Velocity 
Uncertainty 

0.01α 0.01α 
meters-per-

second 
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Figure 3. Sample Trajectory and Control for Plane Change Maneuver 

The synthetic data scenario is used in two analyses in this study. The first is the specific 
test case detailed above, with varying state uncertainty, testing the outcome of the anomaly 
hypothesis process. The second is a sensitivity study, meant to extend the algorithm to longer 
duration simulations and more extreme SNR situations, to test the algorithm capabilities. 

3.1.2 Real-World Data 

To complement the simulated scenario, the algorithm is tested using real operational data 
supplied by Captain. Kulumani and Dr. Baldwin at the Air Force Research Laboratory (AFRL) 
Space Vehicles Directorate. The availability of this real-world data drove the construction of the 
simulated scenario in Section 3.1.1. The data, taken from observations of the Galaxy 15 
geostationary satellite, spans the month of February 2014, and includes Earth-centered Earth-
fixed (ECEF) position and velocity, as well as radial, in-track, and cross-track (RIC) acceleration 
(as seen by a rotating Hill frame attached to the spacecraft). Inspection of the acceleration data, 
shown in Figure 4, reveals two candidates for the North-South (inclination) station-keeping 
maneuver: one during February 9th, and another during February 23rd. Both candidates show a 
large anomalous cross-track acceleration (seen in the bottom plot of Figure 4), which is 
indicative of a plane change maneuver and therefore a station-keeping maneuver. 
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Figure 4. RIC Acceleration Data of Galaxy 15 from WAAS Data 

The data is analyzed in a similar manner to the synthetic data sensitivity study: by 
varying boundary condition uncertainty and time, a sensitivity study is conducted to construct 
probability of anomaly confidence curves with respect to SNR and simulation duration. From the 
two candidate maneuvers, the initial boundary condition is selected as the February 8th 
maneuver, just before the large cross-track thrust. This initial boundary condition is held fixed, 
and the final state and simulation duration are changed by choosing different final boundary 
condition states. Therefore, the study begins with a simulation duration of 1 hour and increasing 
to a duration of 48 hours. The results of this sensitivity study are included in Section 4.2. 

4.0 RESULTS AND DISCUSSION 

The results from this effort are broken down into numerous sections, addressing various 
portions of the proposed work. The results from the simulated scenario are discussed to validate 
the minimum-fuel distance metric approach to maneuver detection. Similarly, the real-world data 
is used to test the application of the software suite to a plausible operational situation (part 1 of 
SoW item ‘Compare Results’). The minimum-fuel distance metric approach is also compared to 
other common distance metrics to assess its usefulness, particularly in spacecraft in maneuver 
detection (part 2 of SoW item ‘Compare Results’). 
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4.1 Framework Validation 

The simulated one-hour, one-degree GEO inclination correction maneuver, as defined in 
Table 1 and Section 3.1, is used to validate the DAMMM algorithm, ensuring functionality of the 
algorithm as shown in Figure 1. The resulting nominal simulated maneuver trajectory is shown 
in orbit-element space in Figure 2, showing the 1-degree inclination correction. The quadratic 
cost for this maneuver is shown in Table 2. Using the control history obtained from the trajectory 
optimizer, the actual velocity change (denoted as ΔV) can be computed as the integral of the 
thrust accelerations over time. As a sanity check, this velocity change is compared to other 
bounding costs for validation. For instance, any non-impulsive maneuver is bounded from below 
by the impulsive equivalent of that maneuver. The velocity change required for an impulsive 1-
degree inclination change at GEO is shown in Table 2, and optimal trajectory is bounded from 
below by the impulsive cost as expected. Additionally, an upper-bound cost can be applied based 
on the quadratic cost from the maneuver [9]. The value of the upper bound for this scenario is 
also shown in Table 2. The trajectory cost is within the acceptable range for both of these checks. 

Table 2. Simulated Maneuver Control Cost and Comparisons 

Parameter Value Units
Quadratic Control Cost 0.4022 m2/s3

Impulsive ΔV 53.6624 m/s
Actual ΔV 53.8151 m/s

Upper-bound ΔV 53.8153 m/s

Using the nominal optimal trajectory for this scenario, uncertainty is introduced in the 
initial and final UCTs. The initial and final UCTs are each initialized with 1-meter position 
uncertainty and 0.01-meter-per-second velocity uncertainty. Notice that the velocity uncertainty 
is much smaller than the required velocity change from Table 2, so intuition says that this 
condition is highly observable and the probability of anomaly is 1. Indeed, this is the case as the 
nominal SNR for this case is very high. The uncertainties were then scaled together up to 104 
times the initial amount in order to increase the position and velocity noise, for a maximum 
position and velocity uncertainty of 100 kilometers and 1 kilometer-per-second, respectively. 
Figure 5 shows the result of the variation of the probability of anomaly as a function of SNR. As 
desired, the probability of anomaly at an SNR of 1 is exactly 0.5, so there is an equal likelihood 
that the observed state change is caused by a control maneuver or uncertainty. As SNR increases 
above 1, the likelihood that a maneuver occurred increases, and vice versa below an SNR of 1. It 
can be noted that above an SNR of 6 the probability of anomaly is always 1, so the plots have 
been truncated to only show the interesting lower ranges of SNR. Given the results from this 
simulated scenario, if the SNR is above 2, the algorithm would say that there is a high likelihood 
that either the object seen has maneuvered or the tracks are not correlated and actually belong to 
separate objects. In order to make this association distinction, prior information on the object and 
the propulsive requirements from the optimal trajectory should be considered. This nominal 
simulated scenario has shown that the DAMMM algorithm is capable of ingesting UCT data 
(states and distributions) and utilizing knowledge of orbital mechanics to provide data to aid in 
the association of the tracks. 
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Figure 5. Probability of Anomaly vs. SNR, Simulated Scenario, 1-hour Duration 

The algorithm has been shown to function well in this specific scenario, but in order to 
better characterize the performance of the algorithm, a sensitivity study is conducted. The 
variable parameters are the state uncertainty (as before) and the time between observations, 
otherwise known as the simulation duration, which was fixed in the previous analysis. Similar to 
the previous analysis, the state uncertainty was initialized at 1-meter position uncertainty, 0.01-
meter-per-second velocity uncertainty, and was scaled up to 105 times to vary SNR. The 
uncertainty had to be varied so drastically because the minimum detectable quadratic cost varies 
widely with changes in simulation duration. Simulation durations varied between 10 minutes and 
48 hours, varying evenly on either side of the ascending node crossing. 

4.2 Synthetic Data Parametric Performance 

Figure 6 is a contour plot containing the results from this investigation; SNR and duration 
are varied on the x- and y-axes respectively, and the contours show lines of constant probability 
of anomaly. The contours shown represent different increasing probabilities of anomaly that the 
maneuver would be observed given the observation duration and uncertainties. Once again, the 
0.5, or 50%, confidence level is a straight line at an SNR of 1, as expected due to the nature of 
the anomaly detection method. The results show a relatively low impact of simulation duration 
on the detectability of the maneuver since the confidence contours are mostly straight lines. The 
major exception to this occurs at simulation durations of 12 and 36 hours, which correspond to 
the initial and final conditions with the highest out-of-equatorial-plane state difference between 
the observations. At these points in the orbit, smaller boundary condition uncertainty is required 
to be able to conclude that a maneuver has indeed occurred. However, for even 75% confidence 
in maneuver detection, the SNR required is never greater than 2. 
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Figure 6. Anomaly Detection Probability Confidence-level Contours for Uncertainty and 
Duration Sensitivity Study, Synthetic Scenario 

This result emphasizes an advantage of the control metric approach, which is that it 
performs consistently with respect to observation duration. Some previous knowledge of the 
orbit is still useful in determining the validity of the maneuver detection probability results. For 
instance, when attempting to detect inclination change maneuvers, observations spaced at half-
orbit periods are not ideal because this is could yield a large state difference and require lower 
observation uncertainty to detect maneuvers with high likelihood. Another, more obvious, result 
is that larger maneuvers, which yield a higher SNR for the same boundary condition uncertainty, 
are easier to detect. This is particularly relevant for maneuvers by spacecraft with variable 
specific-impulse engines, where the state changes are small and spread out over a long time. 
Conversely, a large state-change by a nearly-impulsive maneuver could still be detected even in 
a short time between observations, if the control required for the maneuver significantly exceeds 
the state change in the homogenous orbit based on boundary condition uncertainty. 

4.3 WAAS Data Parametric Performance 

To further investigate the effectiveness of this algorithm, and to apply it to a situation 
representative of operational situations, real data was obtained from AFRL and used in the 
algorithm as described in Section 3.2. The data obtained was from roughly one month of 
observations (during February 2014) of the Galaxy 15 spacecraft in geostationary orbit. This 
spacecraft features an IHI BT-4 propulsion system, which performs as a variable specific-
impulse engine, so the results should be in line with section 4.1. The data was examined to pick 
out point in time where a station-keeping maneuver likely occurred, determined by the 
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acceleration data shown in Figure 4. As discussed in Section 3.2, the initial boundary condition 
was chosen as a state just before the large cross-track acceleration observation on February 8th. 
Beginning with this point, the final condition was selected by increasing the duration between 
observations, up to 48-hour simulation duration. The state uncertainty was varied similar to the 
simulated case, beginning with 1-meter position uncertainty and 0.01-meter-per-second velocity 
uncertainty and scaling up to a factor of 105 times to vary SNR. 

The results of this sensitivity study are shown in Figure 7. The confidence-level contours 
show similarities with Figure 6 from the synthetic scenario. The 0.5 confidence level is once 
again a straight line at a SNR of 1, as prescribed by the method. In this case, though, the 
probability of detection is even more consistent. This is likely because of the differences between 
the modeled dynamics and real system. The simulation assumes Keplerian two-body dynamics, 
whereas in reality many accelerations are acting on the RSO, including n-body gravitational 
effects, non-spherical gravitational perturbations, and solar radiation pressure. As seen in the 
acceleration data in Figure 4, the spacecraft is thrusting continuously, likely rejecting some of the 
perturbations to maintain its orbit slot. Due to this constant maneuvering and unmodeled 
dynamics, there is less correlation between states with half-orbit-period observation time 
differences than in the simulation. Therefore the nominal control cost required to associate UCTs 
is more consistent throughout the orbit. 

The WAAS data was also sampled with a lower duration between observations, with an 
average 20-minute duration increase between the sampled WAAS data points. The agreement 
between the simulated and operational data cases reinforces the applicability of this algorithm to 
real data. Even given the simplifications in the algorithm, notably the Keplerian two-body 
dynamics assumptions of the trajectory optimization step, the results from using real data set 
closely resemble the simulated example. This lends confidence to the application of this 
algorithm to operational data. 

Figure 7. Anomaly Detection Probability Confidence-level Contours for Uncertainty and 
Duration Sensitivity Study, WAAS Data 
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4.4 Comparisons to Other Distance Metrics 

The proof of control performance as a metric is shown in the previous work by proving the 
properties of positivity, strict positivity, symmetry, and triangle inequality [8]. In order to assess 
the effectiveness of the control cost as a distance metric, it is important to consider comparisons 
to other common distance metrics. Primarily, it is important to note the differences between 
control cost and both geometric and multivariate distribution distance metrics, and the advantage 
that a control cost metric lends in orbital mechanics applications. 

Figure 8. Geometric Distance Metrics Applied to Maneuvered Object Correlation 

A pictorial example of geometric distance metrics is included in Figure 8. The most 
common geometric distance metric for evaluating the difference between two orbital state 
vectors is Euclidean distance. This considers only the position difference between two different 
states without consideration for uncertainty in the boundary conditions. The Euclidean 
distance is calculated by taking the 2-norm of the difference in position, expressed in Equation 9: 

  ݀ாሺ࢞஺, ࢞஻, ஻ሻݐ ൌ ||ሾࡵ ሿሺ࢞஻ࡻ െ ࢞஺ሺݐ஻ሻሻ||ଶ		, (9)

where xB is state vector of the final UCT and xA(tB) is the state the initial UCT state propagated 
to time tB. The quiescent propagated state xA(tB) is calculated by taking the initial condition UCT 
and propagating it under the assumption that no maneuver has been performed. In Euclidean 
distance, only the positional difference is considered in relating the two states. For observation 
association in the space environment, this is not a good method since even a small control input 
can cause a large positional diversion over time. For instance, a spacecraft that performs a plane 
change maneuver at the ascending node will have a small positional difference between the 
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perturbed and homogenous orbits at first, but after a quarter of an orbit period the out of plane 
displacement will be significant. Furthermore, depending on the time of observation, objects in 
very different orbits reside close in position. In each of these cases, a geometric distance metric 
would have a difficult time of correctly associating uncorrelated tracks. 

Alternately, metrics that measure the distance between multivariate normal distributions, 
such as an orbital state vector, can take into account both position and velocity information as 
well as uncertainty in the state vectors. This is ideal in defining a metric to discriminate between 
two orbital state observations. One example of such a metric is the Mahalonobis distance, which 
effectively applies a weight to the state difference along each axis based on the combined 
uncertainty along that axis in the observations [10]. The expression for the Mahalonobis distance 
is given in Equation 10: 

݀ெሺ࢞஺, ,࡭ࡼ ࢞஻, ,࡮ࡼ ஻ሻݐ ൌ ඥሺ࢞஺ሺݐ஻ሻ െ ࢞஻ሻ்ሺ࡭ࡼሺ࢚࡮ሻ ൅	࡮ࡼሻିଵሺ࢞஺ሺݐ஻ሻ െ ࢞஻ሻ	 ,  (10) 

where xB and PB are the full state and covariance information of the state estimate from the final 
UCT, and xA(tB) and PA(tB) are the state and covariance of the quiescent propagated state. Similar 
to Euclidean distance, the propagated homogenous state is calculated by taking the initial 
condition UCT and propagating it under the assumption that no maneuver has been performed, 
and the propagated covariance is calculated using the propagated state transition matrix to update 
the initial covariance. Mahalonobis distance improves upon Euclidean distance by accounting for 
uncertainty: larger uncertainty in any axis will yield a lower distance metric value. A value of 1 
for the Mahalonobis distance is a 1-sigma distance (similarly, a value of 2 is a 2-sigma distance, 
etc.). Low values of the Mahalonobis distance yield a higher confidence in correlation of the full 
UCT, accounting for both the full state (position and velocity) and state uncertainty. However, 
Mahalonobis distance is still at its core a state differencing metric. Therefore, it still has the issue 
in orbital mechanics that, depending on the observation times, small control maneuvers can 
cause outsized state differences, and therefore is not ideally suited for orbital mechanics 
applications. Additionally, the Mahalanobis distance metric does not characterize maneuvers – it 
simply accounts for differences between two UCT states. 

Both the Euclidean distance and Mahalonobis distance metrics are calculated alongside 
the synthetic and WAAS data sensitivity studies (presented in section 4.2 and 4.3, respectively). 
This allows a direct comparison of the various distance metrics. The resulting contour plot for 
Euclidean distance (in kilometers) is shown in Figure 9. First, it can be seen that, as expected, 
increasing SNR does not affect Euclidean distance, since it does not account for uncertainty. The 
Euclidean distance increases to a maximum at a duration of one-half orbit, when the 
homogenous state and maneuvered state are farthest in positional separation. The metric then 
decreases back toward zero at an orbit duration, when the orbits cross paths at the line of nodes. 
This behavior is cyclical with an orbit period. The difficulty of using Euclidean distance for UCT 
correlation or association can be seen as the value of the metric is very much dependent upon the 
time of observation, so developing thresholds for association is difficult. For instance, the 
Euclidean distance breaks down as an association metric when the position difference is small 
because it does not account for the velocity difference. Even RSOs in very dissimilar orbits (such 
a closed orbit and a fly-by trajectory) can reside in close proximity for a short time, so simply 
establishing a position threshold using Euclidean distance is not sufficient. 

In contrast, the Mahalonobis distance metric plot, shown in Figure 10, is much more 
condensed for most duration values, so a smaller duration time-frame is also shown in Figure 10. 
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Here, the probability volume within the Mahalonobis Distance (MD) isoprobability surface is 
computed to give a confidence probability that the final state is consistent with the initial state, 
give both state uncertainties. It should be noted that SNR is not inherently meaningful for use 
with Mahalonobis distance since minimum detectable cost is not a factor in the equation (the ષ 
matrix from Equation 4 ends up being a scaling factor). However, for better comparison between 
all three metrics, Mahalonobis distance derived probability of anomaly was also plotted against 
SNR. At durations near an orbit period, the Mahalonobis distance decreases, showing that the 
UCTs are more closely correlated, with a higher likelihood that state uncertainty alone explains 
the observation difference. A maneuver is harder to detect at these points. Conversely, at the 12- 
and 36-hour durations, where the out-of-plane displacement is at its maximum, the Mahalonobis 
distance is considerably higher, showing that the observed state change likely requires a 
maneuver or other anomaly. Once again, this is due to the inherent state differencing in the 
metric, making the development of thresholds difficult for application to arbitrary UCT 
correlation. 

Figure 9. Euclidean Distance Metric (in km) for Synthetic Scenario Sensitivity Study 
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Figure 10. Mahalonobis Distance Metric for Synthetic Scenario Sensitivity Study 

The advantage that the control distance metric has over these other distance metrics is 
that it is able to account for the specific situation of orbital mechanics when associating UCTs. 
As described earlier, even small control perturbations can cause a large state divergence over 
time, even though the orbits are actually nearly identical. All of the above metrics use state 
differencing to compute the distance between the observations, whereas the control distance 
metric implemented here considers the optimal control required to connect the tracks. In the 
simplest case, an un-maneuvered object should have a control distance of zero between any two 
points in its orbit, providing a clear indication that the tracks are correlated. In this case, the 
geometric or normal distribution metrics will also yield zero distance metrics because the 
estimated and propagated homogenous states are identical. For maneuvered tracks, however, the 
distance metrics described in this section do not provide a simple convention for associating 
tracks, as it would need to involve some level of thresholding. The control distance metric 
described in this study provides a natural method for correlating maneuvered tracks by 
computing the maneuver required to connect the tracks and accounting for uncertainty to test the 
hypothesis that a maneuver occurred. The only additional logic required to associate tracks is, if 
the probability of anomaly is high, to examine the history of the maneuver required. If the 
control effort required exceeds the perceived control capability of the RSO, the UCTs can be 
assumed not correlated, and vice versa for a reasonable control effort. Therefore, for orbital 
mechanics applications, the control distance metric provides an intuitive method of detecting 
maneuvers and correlating UCTs. 

Other distance metrics, such as Mahalonobis distance, are commonly used in UCT 
correlation, and perform well in detecting whether two UCTs are related by their states and 
uncertainties. Mahalonobis distance can be useful for sensing maneuvers or unmodeled 
dynamics, as the distance will increase drastically; however, it cannot provide much more 
information. Therefore, if the task is simply to detect whether a maneuver has occurred, 
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Mahalonobis distance is adequate. In comparison, the control distance metric presented here 
provides an anomaly detection capability that is more consistent with observation duration and 
takes into account orbital dynamics. Additionally, since the nominal trajectory must be 
computed, the trajectory connecting the UCTs is also obtained in the process, which can be 
reviewed to inspect realism and feasibility of the anomaly hypothesis. 

The differences between the metrics lend themselves to different applications. Consider a 
scenario where three space objects are detected in close proximity. At a later observation, three 
objects are also detected, but some or all of them have modified orbit element slots. Mahalonobis 
distance could be used to hypothesize whether the objects had indeed maneuvered, based on state 
differences and uncertainty, but it merely provides a statistical similarity set of the data. For 
instance, Mahalonobis distance cannot account for maneuvering objects. With control distance 
metrics, the same information and more can be gathered. The trajectories required to connect 
each UCT can be calculated, providing an ordered pair of the most likely correlations and their 
respective trajectory or maneuver requirements. In the three-RSO scenario, the UCT 
combinations that yield the lowest total control cost would be the most likely correlations, and 
the connecting trajectories can be reviewed to confirm the hypotheses. 

In addition to comparisons between metrics with synthetic data, the metrics were used to 
investigate maneuver detection in the WAAS data. The Euclidean distance metric plot, shown in 
Figure 11, bears resemblance to the synthetic data plot; the oscillations are smaller in magnitude 
in this case, but the Euclidean distance does show periodic behavior with the orbit period. The 
differences between Figure 9 and 11 can be attributed to the unmodeled dynamics and the 
spacecraft’s continuous maneuvering to reject those perturbations. 

The Mahalonobis distance plot, in Figure 12, also bears resemblance to the synthetic data 
plot in Figure 10, showing the same improved anomaly detection capability (higher Mahalonobis 
distance for a given SNR) at the 12- and 36-hour durations, where the out-of-plane displacement 
difference is greatest. The generally lower values of Mahalonobis distance at other durations are 
also likely due to unmodeled dynamics and the continuously thrusting behavior of the spacecraft 
data. Mahalonobis distance is only able to detect that a maneuver has occurred, but control 
distance can determine more information; for instance, the type of maneuver can be determined 
based on the control and trajectory from the trajectory optimization step. In contrast, control 
distance can both confirm maneuvers and provide the most likely combination of states, 
providing added data over the existing metrics. 

On the surface, it may appear that the consistently lower SNR (or equivalently, track state 
uncertainty) required to associate UCTs would lead a prudent SSA operator to use the 
Mahalanobis distance metric.  However, based on the control distance metric results, it is the 
view of the authors that such reliance on MD data association may, at particular points in the 
orbit or for specific durations, prematurely associate data and eliminate potentially useful 
association hypotheses.  Said differently, the Mahalanobis distance metric may lead to missed 
associations.  This is true namely because the Mahalanobis distance metric assumes that no 
maneuvers have taken place.  The control metric distribution given the same information 
necessarily requires lower uncertainty (higher SNR) to claim that an anomaly has 
occurred because the assumed system may include controlled thrust.  
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Figure 11. Euclidean Distance Metric (in km) for WAAS Scenario Sensitivity Study 

Figure 12. Mahalonobis Distance Metric for WAAS Scenario Sensitivity Study 

An observation of the Mahalanobis distance computation method must be made.  As 
previously stated, the MD implementation for this report does not model maneuvers or 
perturbations.  One way to model such perturbations is to include process noise (dynamics 
uncertainty).  Then, as the uncertainty covariance is propagated, the volume of the uncertainty 
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necessarily increases, and Mahalanobis distances for all associations naturally reduce.  Thus, 
when process noise is included, fewer track association hypotheses are eliminated, as in the 
control distance results.  The problem with this approach, however, is two-fold: 1) maneuvers 
result in structured accelerations, and are not well modeled with random accelerations assumed 
using process noise, and 2) to appropriately choose the process noise to capture the maneuvering 
trajectory, one must first know the approximate size of the maneuver, resulting in a ‘chicken or 
the egg’ problem. 

To summarize, the Mahalanobis distance metric functions well as an UCT association 
method when space objects (SOs) are quiescent or when there are no other nearby SOs. 
However, if maneuvers occur, particularly when clusters of SOs are concerned, the Mahalanobis 
distance metric eliminates credible association hypotheses because active structured maneuvers 
are not considered. 

5.0 CONCLUSIONS 

This research demonstrates the application, effectiveness, and limitations of the 
DAMMM algorithm. The algorithm is designed to solve the two-point boundary value problem 
of space object observations to address the needs of object track correlation and maneuver 
characterization. The method makes use of control cost as a distance metric, constructing a 
trajectory to connect the boundary conditions under Keplerian dynamics and optimal control 
assumptions. A scenario is constructed to mirror a station-keeping maneuver, and the results 
were compared to actual station-keeping maneuvers from WAAS observational data of the 
Galaxy 15 spacecraft. Additionally, the limitations of the algorithm are tested to determine the 
sensitivity of the algorithm to sensor noise and observation times. In general, anomaly 
probability is consistent with varying duration and constant SNR. Finally, the control distance 
metric is compared to other common distance metrics to highlight the advantages of using 
control distance to correlate object tracks.  
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APPENDIX A: DAMMM Software Framework Code Description 

This appendix describes the DAMMM software framework as shown in Figure 1 of the 
report. Each major component of the framework is described with the inputs required and 
outputs provided. A script can be written as a wrapper to handle the input tracks and tie the 
functions together as shown in Figure 1, tailored to the specific scenario encountered. All code is 
implemented in MATLAB. 

Trajectory Optimization – trajOptimizer.m 

%========================================================================== 
%[optTraj] = trajOptimizer(scenario,settings) 
% 
%  Solves a two-point boundary value problem to corresponding to the input 
%  scenario. Using Keplerian orbital dynamics, the optimizer seeks to find 
%  the thrust accelerations required to optimally maneuver a spacecraft 
%  to match the boundary conditions using a quadratic cost function, 
%  consistent with variable-specific impulse engine performance. The 
%  constrained minimization function (fmincon) utilizes well-known 
%  gradients for the cost function and dynamics constraints to improve 
%  convergence performance, and the settings structure input can be used to 
%  further tune optimizer performance. 
% 
%INPUT 
%  scenario     structure defining scenario, must contain the following 
% fields: 
% 'x0' - 6x1 vector, initial ECI state (km, km/s) 
% 'xf' - 6x1 vector, final ECI state (km, km/s) 
% 't0' - 1x1 scalar, initial time (s) 
% 'tf' - 1x1 scalar, final time (s) 
% 'dt' - 1x1 scalar, time step (s) 
%  settings     structure containing settings for optimization routine, 
% contains the following fields: 
% 'maxFuncCalls' - 1x1 scalar, maximum number of steps to 
% use in optimization routine 
% default: 3000 
% 'abstol' - 1x1 scalar, absolute convergence 
% tolerance in optimizer 
% 'reltol' - 1x1 scalar, relative convergence 
% tolerance in optimizer 
% 'tolx' - 1x1 scalar, termination tolerance for 
% changes in decision variable 
% default: 1e-10 
% 'tolcon'       - 1x1 scalar, tolerance on constraint 
% violation 
% default: 1e-6 
% 'genGuess'     - boolean, true to generate a guess of 
% control inputs to prime the optimizer 
% 'useGradients' - boolean, true to use gradients in cost 
% function and trajectory constraints, 
% default: 'true' 
% 'displayMode'  - string, selects display mode for 
% optimizer, review fmincon 'Display' 
% for options 
% 
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%OUTPUT 
%  optTraj structure containing resulting optimal trajectory data 
% 'time'       - 1xn vector, simulation time steps (s) 
% 'trajectory' - 6xn vector, state at each time step for 
% optimal trajectory (km, km/s) 
% 'control'    - 3xn vector, thrust accelerations at each 
% time step for optimal trajectory 
% (km/s^2) 
% 'dV'         - 1x1 scalar, delta-v computed by 
% integrating thrust acceleration output 
% (km/s) 
% 'cost'       - 1x1 scalar, optimal quadratic control 
% cost (km^2/s^3) 
% 
%-------------------------------------------------------------------------- 

Fit Adjoints – fitAdjoints.m 

%========================================================================== 
%[xstar,pstar,ustar,tstar] = fitAdjoints(xInp,uInp,tInp,mu,Re) 
% 
% Convert the direct trajectory (x(t),u(t)) with quadratic control cost to 
% an equivalent indirect trajectory (e.g., x0, p0). Uses input control 
% array to generate costate guess under assumptions of optimal control, 
% iteratively update costate guesses until costate guess converges. 
% Propagates new indirect trajectory using Keplerian dynamics to check  
% errir between new optimal trajectory and input trajectory. 
% 
%INPUT 
%  xInp - 6xn array, direct trajectory states (km, km/s) 
%  uInp - 3xn array, direct trajectory controls (km/s^2) 
%  tInp - 1xn vector, direct trajectory times (s) 
%  mu   - 1x1 scalar, gravitational parameter of planet 
%  Re   - 1x1 scalar, equatorial radius of planet 
%   
%OUTPUT 
%  xstar - 6xn array, optimal indirect trajectory states  (km, km/s) 
%  pstar - 6xn array, optimal indirect trajectory costates 
%  ustar - 3xn array, optimal indirect trajectory controls  (km/s^2) 
%  tstar - 1xn vector, optimal indirect trajectory times (s) 
% 
%-------------------------------------------------------------------------- 

Compute Cost Distribution – genCostDist.m 

%========================================================================== 
%[pdf_cost,quad_cost,min_cost,mu_Pu,sig_Pu] 
%                       = genCostDist(xvec,pvec,tvec,BCs,Pkk,params) 
% 
% Generate cost distribution for nominal indirect trajectory given boundary 
% condition and systemic uncertainty inputs. 
% 
%INPUTS 
%  xvec     6xn km, km/s, mean state space trajectory over t 
%  pvec     6xn (), ()/s, mean adjoint trajectory over t 
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%  tvec     1xn s, time vector 
%  BCs Cell array of boundary conditions, i=1,...,Np.  Each BC has four 
parameters 
%   BC{i}.t 1x1 scalar time of boundary condition 
%   BC{i}.P pxp covariance matrix of ith boundary condition uncertainty 
%   BC{i}.y px1 nominal (mean) ith boundary condition value 
%   BC{i}.H pxn partial derivative of ith boundary condition (\partial g 
/partial x) 
%  Pkk 2x2 covariance matrix of dynamics parameter uncertainty(ies) 
% (atmospheric density and ballistic coefficient) 
%  params   Cell array of dynamics parameters parameters 
%   params{1}   1x1, km^2/s^3, MU, Central body gravitational constant 
%   params{2}   1x1, (), J2 coefficient 
%   params{3}   1x1, (), J3 coefficient 
%   params{4}   1x1, km, Radius of central body 
%   params{5}   1x1, kg/m^2, Atmospheric density 
%   params{6}   1x1, kg/m^2, Ballistic coefficient 
%   params{7}   1x1, km/s^2, Maximum available thrust acceleration 
% 
%OUTPUTS 
%  pdf_cost  - 1xr probability distribution of quadratic control costs 
%  cost_dist - 1xr quadratic cost values for pdf_cost (km^2/s^3) 
%  min_cost  - 1x1 minimum detectible quadratic cost (expectation of 
% systemic uncertainty) (km^2/s^3) 
%  mu_Pu     - 1x1 first moment of cost distribution 
%  sig_Pu    - 1x1 second moment of cost distribution 
% 
%-------------------------------------------------------------------------- 

Test Anomaly Hypothesis – det_anomaly_cost.m 

%========================================================================== 
%[p_anomaly,details] = det_anomaly(pdf_DV,DV,method,det_params) 
% 
% Determine the probability that an anomaly has occurred. Given input 
% distribution  and trajectory data, determine probability that the observed 
% state change is attributable to anomaly or uncertainty in state. 
% 
%INPUT 
%  pdf_cost   - 1xr probability distribution of Delta V 
%  cost_dist  - 1xr Delta V values for pdf_DV 
%  method string argument for detection method to be used.  Options 
% are 'HSA' (Holzinger-Scheeres-Alfriend) 
%  det_params - cell of detection parameters for the method selected 
%  mu_Pu - 1x1 first moment of cost distribution 
%  sig_Pu     - 1x1 second moment of cost distribution 
% 
%OUTPUT 
%  p_anomaly - 1x1 probability that an anomaly has occured 
%  details   - method dependent structure of ancillary information 
% 
%-------------------------------------------------------------------------- 
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APPENDIX B: Theory Extension 

This appendix describes novel theoretical results that may be used to compute the 
distribution of quadratic control distances using Gaussian mixtures as boundary condition 
uncertainties. 

The quadratic control cost for a single term of the Gaussian sum connecting Gaussian 
initial distribution I to Gaussian final distribution j may be described as 

௜ܲ௝ ൌ ݈௜௝ ൅ ௜௝࢓
் ௜௝ࢂ ൅ ௜௝ࢂ௜௝ࡺ௜௝ࢂ (B-1)

where ݈௜௝ ∈ Թ, ࢓௜௝
் ∈ Թଶ௡ ௜௝ࡺ , ∈ Թଶ௡	୶	ଶ௡ , and the random variable ࢂ	~	ܰ൫ࣆ௜௝, ௏,௜௝൯ࡼ , where 

Eൣࢂ௜௝൧ ൌ ௜௝ and Eࣆ ൤Eൣࢂ௜௝൧
்
Eൣࢂ௜௝൧ െ 	Eൣࢂ௜௝ࢂ௜௝

் ൧൨ ൌ ௜௝ࢃ ௏,௜௝. Defining a new random variableࡼ

such that 

௜௝ࢃ ൌ ௜௝ࢂ െ ௜௝ࣆ

where now ࢃ	~	ܰ൫૙,ࡼ௏,௜௝൯. The cost ௜ܲ௝ can be re-written in terms of this new random variable 
using direct substitution: 

௜ܲ௝ ൌ ݈௜௝ ൅ ௜௝࢓
் ൫ࣆ௜௝ ൅ࢃ௜௝൯ ൅ ൫ࣆ௜௝ ൅ࢃ௜௝൯

்
௜௝ࣆ௜௝൫ࡺ ൅ࢃ௜௝൯

							ൌ ݈௜௝ ൅ ௜௝࢓
் ௜௝ࣆ ൅࢓௜௝

் ௜௝ࢃ ൅ ௜௝ࣆ
் ௜௝ࣆ௜௝ࡺ ൅ ௜௝ࣆ2

் ௜௝ࢃ௜௝ࡺ ൅ࢃ௜௝
் 	௜௝ࢃ௜௝ࡺ

							ൌ ൫݈௜௝ ൅ ௜௝࢓
் ௜௝ࣆ ൅ ௜௝ࣆ

୘ ௜௝൯ࣆ௜௝ࡺ ൅ ൫࢓௜௝
் ൅ ௜௝ࣆ2

் ௜௝ࢃ௜௝൯ࡺ ൅ࢃ௜௝
்  ௜௝ࢃ௜௝ࡺ

If the following definitions are made: 

ሚ݈
௜௝ ൌ ݈௜௝ ൅ ௜௝࢓

் ௜௝ࣆ ൅ ௜௝ࣆ
் ௜௝ࣆ௜௝ࡺ

෥࢓ ௜௝ ൌ ௜௝࢓
் ൅ ௜௝ࣆ2

்  	௜௝ࡺ

then Equation B-1 may be rewritten in a nearly identical form using the zero-mean random 
variable ࢃ௜௝ as 

௜ܲ௝ ൌ ሚ݈
௜௝ ൅ ෥࢓ ௜௝

் ௜௝ࢃ ൅ࢃ௜௝
் ௜௝ࢃ௜௝ࡺ (B-2)

From Holzinger et al. (see reference 8), Appendix B, the analytic first and second moments of 
௜ܲ௝ may be written as: 

Eൣ ௜ܲ௝൧ ൌ ௉,௜௝ࣆ ൌ ݈௜௝ ൅ ௜௝࢓
் ௜௝ࣆ ൅ ௜௝ࣆ

் ௜௝ࣆ௜௝ࡺ ൅ Trൣࡺ௜௝ࡼ௏,௜௝൧	

Eൣ ௜ܲ௝
ଶ൧ ൌ ௉,௜௝ߪ

ଶ ൌ ൫࢓௜௝
் ൅ ௜௝ࣆ2

் ௜௝൯ࡺ
்
௜௝࢓௏,௜௝൫ࡼ

் ൅ ௜௝ࣆ2
் ௜௝൯ࡺ ൅ 2Trሾࡺ௜௝ࡼ௏,௜௝ࡺ௜௝ࡼ௏,௜௝ሿ

The total cost of all i initial boundary conditions and j final boundary conditions is the weighted 
sum of the individual costs between each i and j: 
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ܲ ൌ෍෍ݓ௜ݓ௝ ௜ܲ௝

௝௜

 

where ݓ௜ is the weight of the ith initial boundary condition and ݓ௝ is the weight of the jth final 
boundary condition. Thus, the analytic expected value of the initial and final Gaussian sum 
boundary conditions may be written as:

Eሾܲሿ ൌ E ቎෍෍ݓ௜ݓ௝ ௜ܲ௝

௝௜

቏	

									ൌ ෍෍ݓ௜ݓ௝Eൣ ௜ܲ௝൧
௝௜

	

										ൌ ෍෍ݓ௜ݓ௝ࣆ௜௝
௝௜

 

which leads to the final result: 

௉ࣆ ൌ ∑ ∑ ௝൫݈௜௝ݓ௜ݓ ൅ ௜௝࢓
் ௜௝ࣆ ൅ ௜௝ࣆ

் ௜௝ࣆ௜௝ࡺ ൅ Trൣࡺ௜௝ࡼ௏,௜௝൧൯௝௜ 	 (B-3) 
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

AFRL  Air Force Research Laboratory 

CDF  Cumulative distribution function 

DAMMM Data association using a minimum-fuel maneuver metric 

ECEF  Earth-centered Earth-fixed  

GEO Geostationary Earth orbit 

MD  Mahalonobis Distance 

PDF  Probability density function 

PI Principal investigator 

RIC  Radial, in-track, and cross-track  

RAM  Random access memory  

RSO Resident space object 

SNR  Signal-to-noise ratio 

SO  Space object 

SSA  Space situational awareness 

SoW  Statement of work 

TPBVP  Two-point Boundary Value Problem  

UCT  Uncorrelated track 

VSI   Variable specific impulse engines  

WAAS  Wide Area Augmentation System 
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